PMS Basics (HBTU)
Reused and rehashed.
This is part of the process modeling and simulation collection.Introduction
These are a compilation of searchable components which are typically asked. (top level headings are currently lower [FIX LATER])
Ordinary Differential Equations
Common: \[ f(x_0,y_0)=y' \]
- \(h\) is the step size
- \(x_0\) and \(y_0\) are starting values
Runge Kutta Methods
The general form is
\[ y_1=y_0+k \]
Runge Kutta I
\[ k=hf(x_0,y_0) \]
Runge Kutta II
\[ k_1=hf(x_0,y_0) \]
\[ k_2=hf(x_0,y_0+k_1) \]
\[ k=\frac{1}{2}(k_1+k_2) \]
Runge Kutta III
\[ k_1=hf(x_0,y_0) \]
\[ k_2=hf(x_0+\frac{h}{2},y_0+\frac{k_1}{2}) \]
\[ k'=hf(x_0+h,y_0+k_1) \]
\[ k_3=hf(x_0+h,y_0+k') \]
\[ k=\frac{1}{6}(k_1+4k_2+k_3) \]
Runge Kutta IV
\[ k_1=hf(x_0,y_0) \]
\[ k_2=hf(x_0+\frac{h}{2},y_0+\frac{k_1}{2}) \]
\[ k_3=hf(x_0+\frac{h}{2},y_0+\frac{k_2}{2}) \]
\[ k_4=hf(x_0+h,y_0+k_3) \]
\[ k=\frac{1}{6}(k_1+2k_2+2k_3+k_4) \]
Milne’s Predictor Corrector
\[ y_4^P=y_0+4\frac{h}{3}(2f_1-f_2+2f_3) \]
\[ y_4^C=y_2+\frac{h}{3}(f_2+4f_3+f_4) \]
Root Finding Methods
Newton Raphson
\[ x_{i+1}=x_i-\frac{f(x_i)}{f'(x_i)} \]
Regula Falsi
With \(a\) and \(b\) as the interval points.
Evaluate \(f(a)\) and \(f(b)\).
\[ x_r=\frac{af(b)-bf(a)}{f(b)-f(a)} \]
Check
\[f(a)f(x_r)<0\implies{b}=x_r\] \[f(a)f(x_r)>0\implies{a}=x_r\]
Secant
\[ x_{i+1}=\frac{x_{i-1}f_i-x_i{f_{i-1}}}{f_i-f_{i-1}} \]
Bisection
With \(a\) and \(b\) as the interval points such that \(f(a)f(b)<0\).
\[ x_r=\frac{a+b}{2} \]
Check
\[f(a)f(x_r)<0\implies{b}=x_r\] \[f(a)f(x_r)>0\implies{a}=x_r\]
SOR
\[ x_i^k=x_i^{k-1}+w[x_{gs}^k-x_i^{k-1}] \]
Where:
- \(x_{gs}^k\) is the \(k^{th}\) iteration Gauss-Seidel vector
- \(w\in[1,2]\) for speed and is usually taken as \(1.2\)
\[ x_{gs}^{k+1}=C+{B}X^k \]